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1a. CC lower bounds for 
set-disjointness [BJKS02]

Information cost and information complexity

Direct sum theorem

Bounds for one-bit problems
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Two-player set-disjointness

� Universe = [n] = {1, 2, …, n}

� Alice has x ⊆⊆⊆⊆ [n]

� Bob has y ⊆⊆⊆⊆ [n]

� YES: x ���� y ≠ ∅∅∅∅

� NO: x ���� y = ∅∅∅∅

DISJ(x, y) = ÇÇÇÇi=1,n (xi ÆÆÆÆ yi)

Alice
x

Bob
y

Number of bits
exchanged to

correctly compute
DISJ(x,y)
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d-cc(DISJ) ≥≥≥≥ ΩΩΩΩ(n)

� Reduce from Equality (EQ)
� Alice has x ∈ {0, 1}n Bob has y ∈ {0, 1}n

� YES if x = y and NO if x ≠ y

� d-cc(EQ) ≥ Ω(n)

� Given instance of EQ on n/2 bits
� Create x’ = x · ¬x and y’ = y  · ¬y

� Run the c-bit protocol for DISJ on n bits

� If x = y then x’ � y’ = ∅

� If x ≠ y then x’ � y’ ≠ ∅

� EQ on n/2 bits can be solved by a c-bit protocol
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Randomized protocols

� The randomized complexity of DISJ 

� Is there a δ-error protocol Π for DISJ such 
that 
� ∀∀∀∀ x, y Pr[Π computes DISJ(x, y)] ≥≥≥≥ 1 - δ

� maxx, y, $ { transcript length of Π(x, y) } = o(n)

� Previous reduction doesn’t give anything

Alice
x, $

Bob
y, $
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Goal of this lecture

� Prove an Ω(n) lower bound for the 
randomized communication complexity of 
two-player DISJ [KS87, R90]
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Intuition

Why should r-cc(DISJ) be high?

DISJ(x, y) = ÇÇÇÇi=1,n (xi ÆÆÆÆ yi) = ÇÇÇÇi=1,n AND(xi, yi) 

∨∨∨∨

∧∧∧∧∧∧∧∧∧∧∧∧

x1 y1 xn ynu v

0 0
j

Have to look at these n one-bit ∧-s 
before determining the output is 0
Ie, any correct protocol should 
implicitly solve n-instances of these 
one-bit ∧-s
Ie, the transcript should contain 
“information” about each of the n 
pairs of inputs
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Basic notation

� x = input to Alice, y = input to Bob,  Π = protocol
� Π(x, y) = message transcript 

� Distribution if Π is randomized

� Π is δ-error for f if ∀x, y
Pr$ [Π(x, y) = f(x, y)] ≥ 1 - δ

� Communication cost = maxx, y, $ |Π(x, y)|
� Rδ(f) = R(f) = communication cost of the best δ-

error protocol for f

(Think of δ as small constant.  We will drop δ
hereafter.)
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Overview of the proof

� Move from communication complexity to 
information complexity

� Prove a direct-sum theorem for information 
complexity of DISJ in terms of one-bit AND

� Prove a lower bound for information 
complexity of one-bit AND
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Quick recap

� X ∼ µ, Entropy H(X) = ∑ µ(ω) log 1/µ(ω)

� Conditional entropy H(X | Y) = E[H(X | Y=y)]

� Mutual information 

I(X : Y) = H(X) – H(X | Y) = H(Y) – H(Y | X)

� Conditional mutual information 

I(X : Y | Z) = H(X | Z) – H(X | Y, Z)

H(Y)

H(Y|X)H(X|Y)
I(X : Y)

H(X)

H(X, Y)

Sub-additivity
H(X, Y | Z) ≤ H(X | Z) + H(Y | Z)
and equality iff X ⊥ Y (indep.)
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Information complexity

Measure of how much information a 
transcript reveals about its inputs

� If (X, Y) ∼ µ is a distribution on inputs, 
information cost of Π wrt µ is

I(X, Y : Π(X, Y))

� Information complexity of f wrt µ, denoted 
ICµ(f), is the minimum information cost of a 
protocol for f wrt µ

� [CSWY01, A93, SS02]
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Information cost vs communication

Let Π be a protocol for f.  Then for any 
distribution µ

I(X, Y : Π(X, Y))

= H(Π(X, Y)) – H(Π(X, Y) | X, Y)

≤ H(Π(X, Y))

≤ maxX, Y |Π(X, Y)|

Corollary:  ICµ(f) ≤ R(f)
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Choosing the distribution

� Hope is to show ICµ(DISJ) ≥ n ⋅ ICν(AND) by 
choosing an input distribution (X, Y) ∼ µ carefully

� Product distributions (X ⊥ Y) are easier for direct 
sums

� But, we cannot hope to get Ω(n) bound if X ⊥ Y

� We have to use a non-product distribution

� We have to generalize the notion of information 
complexity to account for this
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Conditional information complexity

� Key idea: Make X and Y conditionally independent
� Define a random variable D such that X ⊥ Y | D

� If ((X, Y), D) ∼ µ, then the conditional information 
cost of Π wrt µ is

I(X, Y : Π(X, Y) | D)

� Conditional information complexity of f wrt µ, 
denoted ICµ(f | D), is the minimum conditional 
information cost of a protocol for f wrt µ

� Exercise: Show ICµ(f | D) ≤ R(f)

� Bonus: Show that ICµ(f | D) ≤ ICµ(f)
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The distribution for DISJ

“Magic” random variable M ∈R {alice, bob}

� If M = alice, then U = 0, V ∈R {0, 1}

� If M = bob, then U ∈R {0, 1}, V = 0

One-bit distribution ν = ((U, V), M)

� Note U ⊥ V | M

n-bit distribution on ((X, Y), D) ∼ µ = ν ×…× ν

� X ⊥ Y | D

� Places mass only on the NO instances of DISJ
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Direct sum theorem

Theorem: ICµ(DISJ | D) ≥ n ⋅ ICν(AND | M)

Proof steps: Let Π be a protocol for DISJ and 
let ((X, Y), D) ∼ µ

1. Decomposition step:

ICµ(DISJ | D) ≥ ∑j I(Xj, Yj : Π(X, Y) | D)

2. Reduction step: For each j

I(Xj,Yj : Π(X, Y) | D) ≥ ICν(AND | M)
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Decomposition step

I(X,Y : Π(X,Y) | D)

= H(X,Y | D) – H(X, Y | D, Π(X,Y))

= ( Σj H(Xj,Yj | D) ) - H(X, Y | D, Π(X,Y))

≥ Σj H(Xj,Yj | D) - Σj H(Xj,Yj | D, Π(X,Y))

= Σj I(Xj,Yj : Π(X,Y) | D)

= Σj I(Xj,Yj : Π(X,Y) | Dj, D-j )

= E D-j = ∆ Σj I(Xj,Yj : Π(X,Y) | Dj, D-j = ∆)



4

Aug 20-23, 2007 MADALGO, Aarhus 19

Reduction step

Create a two-party protocol  P 
for AND from Π

Given u, v, the protocol  P = Πj, ∆
works as follows:

Alice, Bob create X,Y with Xj = u, 
Yj = v, filling the other Xi’s 
and Yi’s by using ∆
� Alice and Bob can fill in X-j

and Y-j without any 
communication

Then they run Π(X,Y) and output 
whatever Π outputs
� Since µ places mass only on 

NO instances of DISJ, AND 
is computed correctly

∨∨∨∨

∧∧∧∧∧∧∧∧∧∧∧∧

x1 y1 xn ynu v

0 0
j
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Reduction step, contd.

� Exercise: Show that 

(U, V, M, Πj, ∆) ≡ (Xj, Yj, Dj, Π(X, Y) | D-j = ∆)

� Thus each term in summation is 
conditional information cost wrt ν of a 
protocol P for AND, ie, is at least ICν(AND | 
M)
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Lower bounding ICνννν(AND | M)

Assume P computes AND

Information cost of P wrt ν

= I(U, V : P(U, V) | M)

= ½ ( I(U, V : P(U, V) | M=alice) 

+ I(U, V : P(U, V) | M=bob) )

= ½ ( I(Z : P(0, Z)) + I(Z : P(Z, 0)) )     Z ∈R {0, 1}
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What is this quantity?

� Intuitively, if P(0, 0) and P(0, 1) are very 
different, then I(Z : P(0, Z)) must be large

� Conversely, if P(0, 0) and P(0, 1) are very 
similar, then I(Z : P(0, Z)) must be small

Thus, I(Z : P(0, Z)) measures some distance 
between the distributions of P(0, 0) and 
P(0, 1)
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Formalizing …

� The Hellinger distance between two 
distributions P and Q

h2(P, Q) = 1 - ∑ω (P(ω) Q(ω))1/2

= ∑ω (P(ω) + Q(ω))/2 - (P(ω) Q(ω))1/2

� Exercise: Show h is a metric

� Theorem: I(Z : P(0, Z)) ≥ h2(P00, P01) and 
I(Z : P(Z, 0)) ≥ h2(P00, P10) 
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LB for ICνννν(AND | M), contd.

I(U, V : P(U, V) | M)

= ½ ( I(Z : P(0, Z)) + I(Z : P(Z, 0)) ) 

Z ∈R {0, 1}

≥ ½ ( h2(P00, P01) + h2(P00, P10) )

≥ ¼ ( h(P00, P01) + h(P00, P10) )
2 [C-S]

≥ ¼ h2(P01, P10)                             [Triangle]
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A point to ponder

I(U, V : P(U, V) | M) ≥ ¼ h2(P01, P10)

If P computes AND correctly, why should P01

be far from P10

AND is 0 on both these 
inputs
The large distance is 
between P11 and P00, P01, 
P10

0 1

0

1

Bob

Alice
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Rectangular property of d-cc

A deterministic communication protocol 
partitions the input matrix into 
monochromatic rectangles

Alice

Bob

Alice and Bob
send one bit in
each round

0

1 0

0
0

0

0

0

0

1 1

1

1
1

1
1
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Fundamental theorem of d-cc

P is a deterministic communication protocol, 
then the set of inputs with same transcript 
is a combinatorial rectangle

Alice

Bob

a

b d

c

Pab = τ = Pcd

⇒ Pad = τ = Pcb
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Fundamental theorem of r-cc

P is a randomized communication protocol 
and T be the set of all transcripts

∃ p: T × X → {0, 1}, q: T × Y → {0, 1} such 
that

Pr[Pxy = τ] = p(τ, x) · q(τ, y), ∀ x, y, τ

Exercise:  Prove this.  Hint: consider 
extended input = input + private random 
coins and apply the rectangular property
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Cut-and-paste (X-) lemma

Lemma: h2(Pab, Pcd) = h2(Pad, Pcb)

Proof: 

1- h2(Pab, Pcd) 

= ∑τ (Pr[Pab = τ] Pr[Pcd = τ])1/2

= ∑τ (p(τ, a) q(τ, b) p(τ, c) q(τ, d))1/2

= ∑τ (Pr[Pad = τ] Pr[Pcb = τ])1/2

= 1- h2(Pad, Pcb) 

a

b

c

d
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LB for ICνννν(AND | M), contd.

I(U, V : P(U, V) | M) ≥ ¼ h2(P01, P10)

= ¼ h2(P00, P11)

How to relate h(P00, P11) to the error of P?

Via the total variation distance

V(P, Q) = ½ ∑ω |P(ω) – Q(ω)| 

= maxΩ’ ⊆ Ω |P(Ω’) – Q(Ω’)|

� Bonus: Show V(P, Q) ≤ h(P, Q) (2 – h2(P, Q))1/2 
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Variational distance

Lemma: If P is a δ-error protocol for AND, 
then V(P00, P11) ≥ 1 – 2δ

Proof: Let T be the set of transcripts where P 
outputs 0 as the answer

P00(T) ≥ 1- δ and P11(T) ≤ δ

V(P00, P11) ≥ P00(T) – P01(T) ≥ 1 – 2δ

Corollary: h2(P00, P11) ≥ 1 – 2√δ
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Putting all together

Lower bound for ICν(AND | M)

I(U, V : P(U, V) | M) ≥ ¼ h2(P01, P10)

= ¼ h2(P00, P11)

= ¼ (1 – 2√δ)

Combining with direct sum theorem

R(DISJ) ≥ ICµ(DISJ | D) 

≥ n ⋅ ICν(AND | M) 

≥ (n/4) (1 – 2 √δ)
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1b. One-way bounds for 
set-disjointness [BJKS02]

Stronger bounds for set disjointness
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One-way protocols

� Alice looks at her input x sends a message 
to Bob

� Bob looks at this message and his input  y 
and outputs the answer

� It suffices to prove lower bounds in the 
one-way communication model

Alice
x

Bob
y
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Fundamental theorem of 1-way cc

P is a randomized one-way communication 
protocol and T be the set of all transcripts

TA is Alice’s portion, TB is Bob’s portion

For each input x to Alice, y to Bob

∃ px: TA → {0, 1}, My: TA × TB → {0, 1} such 

that for all transcripts (τA, τB)

Pr[Pxy = (τA, τB)] = px(τA) · My(τA, τB) 

px is a distribution, My is a transition matrix
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Proof of this characterization

Pr[Px,y = (τA, τB)] 

= Pr[Ax = τA] ⋅ Pr[By, τA
= τB | A

x
= τA]

= Pr[Ax = τA] ⋅ Pr[By, τA
= τB]

= px(τA) ⋅ My(τA, τB)

where the τA-th row of My describes the 
distribution of By, τA

Denote (p°M)(i, j) = p(i) ⋅ M(i,j)
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Revisit one-bit proof for AND

I(U, V : P(U, V) | M)

≥ ½ ( h2(P00, P01) + h2(P00, P10) )

≥ (½) (½) ( h(P00, P01) + h(P00, P10) )
2 [C-S]

≥ (½) (½) h2(P01, P10) [Triangle]

For one-way protocols, we have

P00 = p0°M0, P01 = p0°M1, P10 = p1°M1

Can we get better bounds on

h2(p0°M0, p0°M1) + h2(p0°M0, p1°M0)
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Improved bound

Lemma: h2(p°M, q°N) ≤ (1+1/√2) ( h2(p°M, q°M) 
+ h2(p°M, p°N) )

Proof:  Let Ci = i-th row of C, Di = i-th row of D

h2(a°C, b°D) = 1 - ∑i ∈ Ω, j ∈ Γ (ai Cij bi Dij)
1/2

= 1 - ∑i ∈ Ω (ai bi)
1/2 ∑j ∈ Γ (Cij, Dij)

1/2

= 1 - ∑i ∈ Ω (ai bi)
1/2 (1 – h2(Ci, Di))

= h2(a, b) - ∑i ∈ Ω h2(Ci, Di) ⋅ (ai bi)
1/2
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Improved bound, contd.

Let βi = h2(Mi, Ni) ≤ 1

h2(p°M, q°N) ≤ (1+1/√2) ( h2(p°M, q°M) + h2(p°M, 
p°N) )  ⇔⇔⇔⇔

h2(p, q) + ∑i (pi qi)
1/2 βi

≤ (1 + 1/√2) (h2(p, q) + ∑i pi βι) ⇔⇔⇔⇔

∑i βi ( (pi qi)
1/2 – (1 + 1/√2) pi ) 

≤ (1/√2) ∑i ((pi + qi)/2 – (pi qi)
1/2)

Exercise: Prove this point-wise for each i

Aug 20-23, 2007 MADALGO, Aarhus 40

Using the improved bound

I(U, V : P(U, V) | M)

≥ ½ ( h2(P00, P01) + h2(P00, P10) )

≥ (½) ⋅ 0.586 ⋅ h2(P01, P10) [Improved bound]

This improvement has implications for multi-
player protocols

Using general Renyi-divergences, can 
improve this even more [BJKS02, CKS03]
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Lecture 2

Bounds for distinct elements problem

Longest increasing subsequence

Deterministic upper bounds

Randomized exact lower bounds

Deterministic lower bounds
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2a. Bounds for distinct 
elements
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Finding distinct elements

� Given X = x1, …, xn compute F0(X), the number of 
distinct elements in X, in the data stream model

Assume xi ∈ [m]

� (ε,δ)-approximation: Output F’0(X) such that with 
probability at least 1 - δ, F’0(X) = (1 ± ε) F0(X)

� Zeroth frequency moment

� Assume log m = O(log n); otherwise hash input

� Sampling needs lots of space

� Without randomization and approximation, this 
problem is uninteresting
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Some previous work

� [FM85]: Assumed ideal hash functions
� [AMS99]: Pairwise independent hashing

(2+ε)-approximation using O(log m) space
� [GT01]: Hashing-based
ε-approximation using O(1/ε2 log m) space 

� [BKS03]: Hashing-based, range-summable
ε-approximation using O(1/ε3 log m) space

� [CDIM02]: Stable distributions
ε-approximation using O(1/ε2 log m) space
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Ω(log m) lower bound [AMS]

Reduction from set equality problem

Alice given X, Bob given Y, both m-bit 
vectors, and the question is if X = Y

� Randomized space bound of Ω(log m)

Given instance of equality, create X’ = φ(X), 
Y’ = φ(Y) where φ is error-correcting code

� If X = Y, then F0(X’ U Y’) = n’

� If X ≠ Y, then F0(X’ U Y’) ~ 2n’
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One-way Ω(1/ε) lower bound

Reduction from set-disjointness with special instances
Alice has bit vector X with |X| = m/2, Bob has bit 

vector Y with |Y| = ε m
� YES: X ⊃ Y
� NO: X ∩ Y = ∅
� One-way lower bound [BJKS]: Ω(1/ε) 
Given disjointness, create Z = (1, x1) … (m, xm) (1, y1) 

… (m, ym)
� YES: If X contains Y, then F0(Z) = m/2
� NO: If X and Y are disjoint, F0(Z) = m/2+ ε m = 

m/2(1 + 2ε)
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Gap-Hamming problem [IW]

Let h(⋅, ⋅) be Hamming distance

Alice given X, Bob given Y, both m-bit 
vectors
� YES: h(X, Y) ≥ m/2

� NO: h(X, Y) ≤ m/2 - √m

Gap-Hamming problem: distinguish the two 
cases in one-way or general 
communication model
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Gap-Hamming captures F0

� Z = (1, x1) … (m, xm) (1, y1) … (m, ym)

� F0(Z) = 2h(X,Y) + (m - h(X, Y)) = m + h(X,Y)

� YES: if h(X, Y) ≥ m/2 then F0(Z) ≥ 3m/2

� NO: if h(X, Y) ≤ m/2 - √m then F0(Z) ≤ 3m/2 - √m = 
3m/2(1 – 1/√m)

In this case, ε ~ 1/√m

Thus, Ω((√m)c) lower bound for gap-Hamming leads 
to Ω(1/εc) lower bound for F0
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Easy Ω(√m) lower bound for 

gap-Hamming

Reduce from set-disjointness

Randomized lower bound of Ω(n) [KS, R] for a special input 
distribution

Universe partitioned into U1, U2, {i}

X = uniform set of size n/4 from U1 ∪ {i}

Y = uniform set of size n/4 from U2 ∪ {i}

� YES: X, Y such that X ∩ Y = {i}

� NO: X, Y such that  X ∩ Y = ∅

h(X, Y) = |X| + |Y| - 2 |X ∩ Y| and let m = n2

Given X, Y, replace each 1 by n 1’s, each 0 by n 0’s to get X’
and Y’

� YES: if X ∩ Y ≠ ∅, then h(X’,Y’) = n2/2 – 2n

� NO: if X ∩ Y = ∅ then h(X’,Y’) = n2/2
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One-pass Ω(m) lower bound for 

gap-hamming [IW, W]

� [IW, W] showed Ω(m) lower bound in the 
one-way model

� Using VC-dimension and embedding

� We will show a simpler proof of this result
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Reduction from indexing [JKS]

Alice has n-bit vector T with |T| = n/2 and 
Bob has index i; assume n/2 is odd

Using public randomness, Alice and Bob pick 
a random n-bit ±1 vector r

Alice computes x = sign (‹T, r›)

Bob computes y = sign (ri)

Now look at the correlation between random 
variables x and y
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Analyzing the correlation

Let s = ∑j ∈ T rj
n/2 odd implies Pr[s < 0] = Pr[s > 0] = 1/2 

� NO: If i is not in T, then x is independent of y

so Pr[x = y] = Pr[sign(s) = sign(ri)] = 1/2 

� YES: If i ∈ T, then let s = s’ + ri
Pr[s’ = 0] = η = c/√n

Pr[s’ < 0] = Pr[s’ > 0] = (1 – η)/2

Pr[x = y] = Pr[s’ = 0] + Pr[sign(s’) = sign(ri) | s’ ≠ 0] 

= η + (1 – η)/2 = (1 +  c/√n)/2 
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Amplifying the gap

� We have random variables x and y with the 
property that 

� NO: Pr[x = y] = 1/2

� YES: Pr[x = y] = 1/2 + c’/√n

� Repeat with different independent random 
vectors r1, r2, …, rt to get t-bit vectors X and Y

� Chernoff shows that if t = O(n) then whp we have 

� NO: h(X, Y) ≥ (1/2 – c1)n

� YES: h(X, Y) ≤ (1/2 – c1)n – c2√n
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A geometric interpretation

Exercise: Normalize the two vectors in 
Euclidean space.  The inner product is 
either ½ or ½ - √n.  Show a reduction 
using Goemans-Williamson random 
hyperplane approach
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2b. Bounds for ordering 
problems [GJKK07, GG07, EJ07]

LIS problem and deterministic upper bound

Lower bound for exact computation

Deterministic lower bound for approximation
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Sortedness of a sequence

� Given sequence σ = σ(1), …, σ(n), each σ(i) ∈
[m], how sorted is σ?
� Kendall distance 

#{ (i, j) | (i < j and σ(i) > σ(j)) or (i > j and σ(i) < σ(j)) }

� Edit distance (ED)

Minimal number of inserts/deletes in σ to make it sorted

� Longest increasing subsequence (LIS)

Max subsequence i1 ≤ … ≤ ik such that σ(i1) ≤ … ≤ σ(ik)

LIS(σ) = n – ED(σ)

� Transpositions, reversals, …
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Longest increasing subsequence

Given sequence σ = σ(1), …, σ(n), each σ(i) 
∈ [m], LIS(σ) is the maximum 
subsequence i1 ≤ … ≤ ik such that σ(i1) ≤
… ≤ σ(ik)

Eg, σ = 3 2 4 6 7 1 8 5

LIS(σ) = 3 2 4 6 7 1 8 5

= 3 4 6 7 8
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LIS algorithm: Patience sort

Let Pσ(i) = smallest letter a ∈ [m] such that 
there is an increasing sequence of length i 
in σ ending at a

Algorithm is to maintain this table and update 
as σ “arrives”

� Data stream algorithm

� O(n) space
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Patience sort

P(1) = … = P(n) = ∞

for j = 1, …, n

read σ(j)

find largest i such that P(i) < σ(j)

set P(i+1) = σ(j)

output largest i such that P(i) ≠ ∞
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2-player protocol for LIS

Theorem: O(1/ε log m + log n) bits to 
approximate LIS(σ = σ1 ⋅ σ2) to within 1 ± ε

Proof: Alice runs Patience Sort on σ1 and 
computes k1 = LIS(σ1)

She sends 〈i, Pσ1
(i)〉 for i = {εk1, 2εk1, …, k1}

Bob finds best extension of these sequences 
by σ2 and outputs the longest, k2

Alice
σ1

Bob
σ2
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k2 ≥≥≥≥ (1-εεεε) LIS(σσσσ)

Let LIS = π1 ⋅ π2, |π1| = λ1, |π2| = λ2

π1(λ1) = a < b = π2(1)

Let λ’1 be multiple of εk1 s.t. λ1-εk1 ≤ λ’1 ≤ λ1

Pσ1
(λ’1) = a’ ≤ π1(λ’1) ≤ π1(λ1) = a

Bob extends this sequence to get

k2 ≥ λ’1 + λ2

≥ λ1 - ε k1 + λ2

= LIS(σ) - ε k1

≥ (1 - ε) LIS(σ)
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t-player protocol/algorithm

� Players computed Qσ ≈ Pσ

� If kj is the longest sequence detected by the j-th
player, he sends Qσ(i) for i ∈ {ε/(t-1) kj, 2ε/(t-1), …, kj}

� Need to make sure |Qσ| remains small (cleanup)

� Communication = (t/ε) log m

� Input to each player = n/t

� If t = √(εn) then gets a one-pass data stream algorithm 
with space O(√n)

Alice
σ1

Bob
σ2

Carol
σ3

Tom
σt
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Randomized lb for exact LIS

� Reduction from one-bit AND(x, y)

� Alice applies σ’A(⋅) to x and Bob applies 
σ’B(⋅) to y

23211

11201

13410

11400

x y σ’A(x) σ’B(y) LIS(σ’A(x) ⋅ σ’B(y))
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LB for exact LIS, contd.

� Reduction from DISJ

� σA(i, xi) = 4(i-1) + σ’A(xi)

� σB(i, yi) = 4(i-1) + σ’B(yi)

23211

11201

13410

11400

x y σ’A(x) σ’B(y) LIS(σ’A(x) ⋅ σ’B(y))
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LB for exact LIS, contd.

Let σ = σΑ(x) ⋅ σΒ(y)

Theorem: If x ∩ y ≠ Ø, then LIS(σ) = n+1, else 
LIS(σ) = n

Proof: If x ∩ y = Ø, then any increasing sequence 
can have only one element from [4(i-1)+1, 4(i-
1)+4].  So, LIS(σ) = n

If i ∈ x ∩ y ≠ Ø, then the following is an (n+1) 
long increasing subsequence

σ(1), …, σ(i), σ(n+i), …, σ(2n)

� Exercise: Make σ a permutation.  Hint: use 8
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Det. lb for approx. LIS [GG07, EJ07]

Goal: Any deterministic algorithm for 
approximating LIS to within (1 ± ε) needs 
Ω(√n) space
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Overview of proof [EJ07]

� Define a primitive function h

� Prove Ω(t) lb for computing h in the t-
player model
� Probabilistic construction of a fooling set

� Define composite function g = OR of t 
separate copies of h

� Prove Ω(t2) lb for computing g in the t-
player model
� “Direct-sum” theorem for fooling sets

� Reduce g to approximating LIS, set t = √n
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Fooling sets, recap

� A fooling set S ⊆ {0,1}n × {0,1}n is such that 
� ∀ (x, y) ∈ S, f(x, y) = 0

� ∀ (x1, y1) ≠ (x2, y2) ∈ S, 

f(x1, y2) = 1 or f(x2, y1) = 1

Theorem: Let S be a fooling set.  Then d-
cc(f) ≥ log |S|

EQ: S = { (x, x) : x ∈ {0, 1}n }

DISJ: S = { (x, ¬ x) : x ∈ {0, 1}n } 
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Basic definitions 

� U = Universe of input to each player

� f: Ut → {0, 1}, player i has i-th input

� M ⊆ Ut (think of a matrix with t columns)

� span(M) = { y ∈ Ut : ∀ i ∈ [t], 

yi is present in the j-th

column of M } 

Alice
x1

Bob
x2

Carol
x3

Tom
xt

3

1

2

4
Aug 20-23, 2007 MADALGO, Aarhus 70

General fooling sets

S is a k-fooling set if 

� f(x) = 1 for each x ∈ S

� ∀ S’ ⊆ S, |S’| = k, ∃ y ∈ span(S’) s.t. f(y) = 0

Theorem: Let S be a k-fooling set.  Then d-
cc(f) ≥ log |S|/k

Proof: We need a new transcript for every 
|S|/k subsets.  
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Primitive function h

x = x1 … xt, where xi ∈ [t] ∪ { 0 }

x can be viewed as a subset of [t] and non-
zero elements are in increasing order

� NO: h(x) = 0 if there are no consecutive 
non-zero elements in x

� LIS(x) ≤ t/2 + 1

� YES: h(x) = 1 if LIS(x) ≥ αt for some α > ½

h restricted to only above inputs
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A large fooling set for h

� Explicitly fooling set seems hard

� Probabilistic method to show one exists

Intuition: Pick random subsets and hope they 
form a fooling set

Theorem: For large k, there is a k-fooling set 
for f of size ct for some c > 1

Method: Pick M random subsets of [t] by 
picking each element with probability p

For p = 1/k, everything works!
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Number of good subsets

Subset is good if it has no two consecutive 
elements of [t]

Lemma: Pr[subset good] ≥ (1 – p2)t

Proof. g(i) = Pr[ subset good for [i] ] 

g(i) = (1-p) g(i-1) + p(1-p) g(i-2)

Solving, g(t) = qt, q = ½ ((1-p)+√((1-p)(1+3p)))

Exercise: Show q > 1 – p2

Corollary: E[good subsets] = (1 – p2)t M
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Covering ααααt by k subsets

J1, …, Jk be random subsets

Consider J = J1 ∪ … ∪ Jk

Pr[element ∈ J] = 1 – (1 – p)k = γ

E[|J|] = γ t

With p = 1/k, ε ∈ (0, ½-1/e), α = (γ-ε) > ½

Pr[|J| < (γ-ε)t] ≤ exp(-ε2γt/2) = δ
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Finishing the existence

If (M choose k)⋅δ < 1 then by union bound 
every k collection of random subsets cover 
at least αt elements and with positive 
probability, there are (1 – p2)t M good 
subsets, which is

(1 – p2)t (1/δ)1/k = ct

where 

c = (1 – 1/k2) ⋅ exp((ε2 γ)/(2k))

c > 1 if k is sufficiently large

Corollary: d-cc(h) ≥ Ω(t)
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Composite function g

h1, …, ht be primitive, with universe of hi is [(i-1)t + 1, it]

Inputs to g

B = t × t matrix, where i-th row Bi is an input for 
function hi

g(B) = ∨ν hi(Bi)

s = sequence formed by

concatenating columns of B

Lemma: LIS(s) ≤ 2t

Proof. s can only go right or down
160140

00109

8005

0210
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Reduction to LIS

Theorem: d-cc(LIS) ≥ d-cc(g)

Proof. If g(B) = 0, then ∀i, hi(Bi) = 0. On each row, 
when going right, we skip two cells. LIS(s) ≤ 3/2 t

If g(B) = 1, ∃i, hi(Bi) = 1. Go along first column to i-
th row, along i-th row, and along last column. 
LIS(s) ≥ (1+α) t

Suppose i-th player gets i-th column in B.  A 
streaming algorithm to (1+ε)-approximate LIS can 
distinguish the above gap and hence can yield a 
protocol for g
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Lower bound for d-cc(g)

Theorem: For large k, there is a kt-fooling set 
for g of size ct2 for some c > 1

Corollary: d-cc(g) ≥ Ω(t2)

Corollary: d-cc(LIS) ≥ Ω(√n)

Intuition: Build a fooling set for g using 
fooling set for h
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Proof: “Direct-sum” property

Let Fi be k-fooling set for hi

F = (F1 × … × Ft)

|F| = |Fi|
t = ct2

Argue that F is a kt-fooling set for g

If B = (B1, …, Bt) ∈ F, then g(B) = ∨ h(B
i
) = 0 since Fi

is a fooling set for hi

Conversely, let F’ ⊆ F, |F’| = kt

Let Hi be projection of i-th column of F’

∃ j, |Hj| ≥ k
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Proof, contd.

W ⊆ F’, |W| = k, cover Hj

Each element of W is a t × t matrix

W = W1, …, Wk

For B ∈ span(W), i-th column of B is picked 
from one of the i-th columns of one of Wr’s
(columns are the input to the players)

Hj = union of j-th rows of W1, …, Wk

Hj is a fooling set for hj ⇒ hj(Bj) = 1

⇒ g(B) = ∨ hi(Bi) = 1
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Thank you!
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